Conductor Bar
Series 815
Installation Instruction

Single Pole Insulated Conductor Rail
Programme 815

Order number
0815xx-...

TABLE OF CONTENT

1. Introduction 2
2. Installation accessories 4
 2.1 Bending device 4
 2.2 Disassembly tool 4
3. Installation sequences 5
 3.1 Hanger clamps 5
 3.2 Rail 6
 3.2.1 Cutting the rail to length 6
 3.2.2 Bending the rail 6
 3.3 Connectors 8
 3.3.1 “Screw-in” connector 8
 3.3.2 “Plug-in” connector 8
 3.4 Anchor cap 9
 3.5 Power feed 10
 3.6 Air gap separating point and expansion joint 11
 3.6.1 Air gap separating point without expansion and jumper cable 11
 3.6.2 Air gap separating point with expansion and jumper cable 12
 3.7 Transfer end cap 18
 3.8 Current collectors 21
 3.9 Collector shoe control unit 23
4. Check of installation 25
5. Maintenance 25
6. Photos of relevant parts 26
1. Introduction

The Wamptler insulated conductor rail, programme 815, is a compact and reliable conductor rail system which is easy and quick to install. The components have been developed to meet the particular requirements of electrical overhead monorails but are also suitable for warehouse storage and retrieval units, testing equipment, machine tools and special machinery etc. The components, which are designed as single-pole units, permit the end-to-end mounting of as many poles as required with a phase spacing of 12 or 14 mms. With the overhead monorail size 180, 12 poles max. can be accommodated, with monorail size 240, 16 poles max.
2. Installation accessories

Simple systems without points and curves can be installed without any special tools as the conductor rails are supplied completely finished.

2.1 Bending device

The bending device is used for curving the conductor rails to produce vertical and horizontal rail arrangements. Electrically operated bending machines are also available for major assembly work.

<table>
<thead>
<tr>
<th>Design</th>
<th>Order Number</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending device</td>
<td>081091</td>
<td>17.5</td>
</tr>
</tbody>
</table>

2.2 Disassembly tool

The disassembly tool is used to dismantle the conductor rails secured in the hanger clamps or end caps.

Disassembly tool in use
3. Installation sequences

3.1 Hanger clamps

The hanger clamps designed as sliding supports are clicked, recessed or screwed, depending on the design, into the travel rail exactly at right angles to it. The support spacing is 0.5 m max. on straight sections and 0.4 m in curves (see page 3). The screw-in hanger clamps require ø 4.5 mm clearance holes for the M4 screws.

The same hanger clamps are required on both sides for air gap separating points and expansion joints in curves.
Installation Instruction

Single Pole Insulated Conductor Rail
Programme 815

3.2 Rail

3.2.1 Cutting the rail to length

The conductor rails are supplied in standard lengths of 4 m. Shorter lengths are available but are generally cut to length on site. To do so, please proceed as follows:

a) Measure length to be fitted (rail and insulation cover are equal in length).

b) Saw the metal rail and PVC insulation to length from the sliding surface side using a fine-toothed hack saw.

c) Deburr the sawn end with a fine file; chamfer the contact surface or the entire rail to approx. 0.3 - 0.4 mm x 15° in order to guarantee perfect transition of the shoe at the rail joint.

d) Blow out the section well and remove all metal chips.

3.2.2 Bending the rail

Curves can be produced both at the works and on site. They are made using the three-roller bending device 081091. Electrically operated bending machines are available on request for extensive installation work.

Vertical arrangement

Horizontal arrangement

[Diagram]
Installation Instruction

Single Pole Insulated Conductor Rail
Programme 815

Vertical curves with a bending radius of 450 mm to ∞ and horizontal curves from 1000 mm to ∞ are possible.
In order to avoid undesirable deformation of the conductor rail, the plastic insert provided must be introduced beforehand into the sliding surface slot for producing horizontal curves and removed again after the bending process.

![Diagram of bending roller and insert piece](image)

Work sequence for producing curves on site:

a) First, mark out the desired radius on a flat surface (e.g. floor).

b) When producing horizontal curves, introduce the plastic insert into the contact surface slot of the conductor rail with the insulation cover fitted.

c) Raise the upper bending roller by turning the adjusting spindle until the rail section can be inserted into the recess provided in the lower roller.

d) Lower the upper bending roller and move the rail section forwards and backwards.

e) This operation is repeated until the desired radius is obtained.

f) All the subsequent rail sections which are to be provided with the same radius can now be bent with this setting.

It is possible to produce curves with straight sections in one piece without connectors.
Installation Instruction

Single Pole Insulated Conductor Rail
Programme 815

3.3 Connectors

3.3.1 „Screw-in“ connector

The rail connectors, which are readily accessible from the front of the conductor rail, are of the screw-in type. The connector, which is easily detached with a size 3 hexagon socket screw key, is introduced into the partially mounted conductor rail with insulation cover. Then the connector cap to protect against contact is pushed halfway over the insulation cover. The next rail section is now pushed into the free end of the connector cover and fitted into the hanger clamp. The M4 hexagon socket screw must be tightened to 2 Nm. The elasticity of the connector cover also allows it to be refitted after connector assembly. The cover is secured against displacement and the screw head always sits lower than the rail sliding surface.

Should the connector cover not rest on the track section, hanger clamps are to be positioned at a max. spacing of 200 mm on both sides of the connector point.

Lengths which are cut to size on site are to be prepared as described in sections 3.2.1 c and d.

3.3.2 „Plug-in“ connector

The plug-in connector is pressed firmly into the mounted rail. It is imperative to ensure that the side without a recess (see diagram) is introduced first. The connector cap is used in the same way as described under 3.3.1. The next rail section is now pushed over the free end of the connector and into the free end of the connector cover. The entire unit fitted into the next hanger clamp. The plug-in connector is designed so that reliable mounting and optimum current transmission are guaranteed. If a connection with a plug-in connector is opened, the connector has to be replaced through a new one!
Installation Instruction

Single Pole Insulated Conductor Rail
Programme 815

3.4 Anchor cap

a) The anchor caps are mounted on the left and right of the hanger clamp. The hanger clamp must be screwed to the track section. The anchor cap is provided with a 3 mm ø hole which serves as a gauge when fixing the anchor cap. A hole is made with a 3 mm ø drill through the insulation cover and rail using the hole provided in the anchor cap. Then the anchor cap is mounted on the insulation cover by turning in such a way that the pin of the anchor cap engages in the 3 mm ø hole in the insulation cover.

b) Assembly of the anchor cap 081531 in 10-pole installations

For space reasons the anchor caps for 10-pole installations are to be arranged on 2 hanger clamps as shown below.
3.6 Air gap separating point and expansion joint

3.6.1 Air gap separating point without expansion and jumper cable

Air gap separating points can be inserted at any position. If used in a curve section, 2 additional hanger clamps are required. Separating points can also be provided at a future date. A piece of rail 46 mm long is cut of the rail at the desired location. The ends must be completely deburred!

The air gap separating points, which are readily accessible from the front side of the conductor rail, are of the screw-in type. The power feed terminals are loosened slightly using a size 3 hexagon socket screw key, size 3. If used as a feeder cable, the connection cable is to be connected to the terminal parts.

Now introduce the feeder terminal into the end cap in such a way that the lug engages the window provided. After the feeder terminal together with the cover has been pushed onto the open rail piece with insulation cover and has been adjusted in the separating point jumper, the M4 hexagon socket screw is tightened to 2 Nm.
Installation Instruction

Single Pole Insulated Conductor Rail
Programme 815

3.6 Air gap separating point and expansion joint

3.6.1 Air gap separating point without expansion and jumper cable

Air gap separating points can be inserted at any position. If used in a curve section, 2 additional hanger clamps are required. Separating points can also be provided at a future date. A piece of rail 46 mm long is cut of the rail at the desired location. The ends must be completely deburred!

The air gap separating points, which are readily accessible from the front side of the conductor rail, are of the screw-in type. The power feed terminals are loosened slightly using a size 3 hexagon socket screw key, size 3. If used as a feeder cable, the connection cable is to be connected to the terminal parts.

Now introduce the feeder terminal into the end cap in such a way that the lug engages the window provided. After the feeder terminal together with the cover has been pushed onto the open rail piece with insulation cover and has been adjusted in the separating point jumper, the M4 hexagon socket screw is tightened to 2 Nm.
3.6.2 Air gap separating point with expansion and jumper cable

The expansion joints electrically separate 2 rail sections in order to absorb changes in length of the rail system caused by the temperature. If power is not supplied individually into the two separated sections, electric jumpering is required. The jumper cables are supplied in various lengths for the individual poles.

A) Expansion joint with 8 mm expansion capacity

Should the air gap separating point not rest on the track section, hanger clamps are to be positioned on both sides of the air gap sep. point at max. spacing of 200 mm.

The individual expansion joints are installed as already described under 3.6.1. The cables are to be laid as shown in the diagram so that unhindered expansion is guaranteed. 2 hanger clamps are to be positioned in the expansion joint section spaced at max. 400 mm.
Installation Instruction

Single Pole Insulated Conductor Rail

Programme 815

a) Determining the number of expansion joints required
(8 mm expansion capacity)

<table>
<thead>
<tr>
<th>L = length / m*</th>
<th>Δt° 10</th>
<th>Δt° 20</th>
<th>Δt° 30</th>
<th>Δt° 40</th>
<th>Δt° 50</th>
<th>Δt° 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

* Spacing between 2 anchor points e.g. end cap piece, curves (with 90° and 180° curves ≤ R 1000 mm the curves act as anchor points).

Δt = Δta + Δtrail

Δta = Temperature range of the ambient temperature

Δtrail = Temperature rise of the conductor rail

- for 40% duty cycle Δtrail = 10°C
- for 65% duty cycle Δtrail = 20°C
- for 100% duty cycle Δtrail = 30°C
b) Gap setting for each expansion joint (8 mm expansion capacity)

Legend:

\(t_{\text{min}} \) = lowest temperature which occurs in the application

\(t_{\text{max}} \) = highest possible operating temperature in the application

1. Draw a connecting line from \(t_{\text{min}} \) to \(t_{\text{max}} \)

2. Mark the ambient temperature during operation horizontally

3. Draw a line from the intersection vertically down and read the air gap to be set

Examples:

1. = Temperature range from 0°C to +60°C.
 Ambient temperature during install.: +20°C.
 Air gap: ca. 5 mm

2. = Temperature range from +10°C to +30°C.
 Ambient temperature during install.: +25°C.
 Air gap: ca. 2 mm
Installation Instruction

Single Pole Insulated Conductor Rail

Programme 815

b) Gap setting for each expansion joint (20 mm expansion capacity)

Legend:

\(t_{\text{min}} \) = lowest temperature which occurs in the application

\(t_{\text{max}} \) = highest possible operating temperature in the application

1. Draw a connecting line from \(t_{\text{min}} \) to \(t_{\text{max}} \)

2. Mark the ambient temperature during operation horizontally

3. Draw a line from the intersection vertically down and read the air gap to be set

Examples:

\(1 \) = Temperature range from 0°C to +60°C.
Ambient temperature during install.: +20°C.
Air gap: ca. 13 mm

\(2 \) = Temperature range from +10°C to +30°C.
Ambient temperature during install.: +25°C.
Air gap: ca. 5 mm
Conductor Bar 815 Manual

Installation Instruction

Single Pole Insulated Conductor Rail

Programme 815

a) Determining the number of expansion joints required
 (20 mm expansion capacity)

\[
\text{Expansion joint 20 mm anchor cap}
\]

<table>
<thead>
<tr>
<th>L = Length / m*</th>
<th>Δt° 10</th>
<th>Δt° 20</th>
<th>Δt° 30</th>
<th>Δt° 40</th>
<th>Δt° 50</th>
<th>Δt° 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

* Spacing between 2 anchor points e.g. end cap piece, curves (with 90° and 180° curves ≤ R 1000 mm the curves act as anchor points).

\[
\Delta t = \Delta t_a + \Delta t_{rail}
\]

\(\Delta t_a\) = Temperature range of the ambient temperature

\(\Delta t_{rail}\) = Temperature rise of the conductor rail

- for 40% duty cycle \(\Delta t_{rail} = 10^\circ C\)
- for 65% duty cycle \(\Delta t_{rail} = 20^\circ C\)
- for 100% duty cycle \(\Delta t_{rail} = 30^\circ C\)
b) **Gap setting for each expansion joint** (20 mm expansion capacity)

Legend:

\(t_{\text{min}} \) = lowest temperature which occurs in the application

\(t_{\text{max}} \) = highest possible operating temperature in the application

1. Draw a connecting line from \(t_{\text{min}} \) to \(t_{\text{max}} \)

2. Mark the ambient temperature during operation horizontally

3. Draw a line from the intersection vertically down and read the air gap to be set

Examples:

1 = Temperature range from 0°C to +60°C.
 Ambient temperature during install.: +20°C.
 Air gap: ca. 13 mm

2 = Temperature range from +10°C to +30°C.
 Ambient temperature during install.: +25°C.
 Air gap: ca. 5 mm
C) Expansion joints with 40 mm expansion capacity

This expansion point consists of 2 expansion joints each with a 20 mm expansion capacity. It is supplied completely assembled. Installation is performed as already described under 3.6.1 and 3.6.2.

3.7 Transfer end cap

Transfer end caps serve as mechanical / electrical interruptions at transfer points and lifting stations. They are available with or without power feed; the crimp terminal is designed for max. 6 mm². Installation is performed as described under 3.6.
In order to guarantee a perfect transfer point of the current collectors, it must be ensured that the distance between the opposite end caps is not more than 5 mm and that the maximum lateral / vertical misalignment does not exceed 3 mm.
Installation Instruction

Single Pole Insulated Conductor Rail
Programme 815

a) Rail joint at right angles

<table>
<thead>
<tr>
<th>Installation dimensions</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>End cap set 8-pole</td>
<td>48.5</td>
<td>61</td>
<td>24</td>
<td>70</td>
<td>22</td>
<td>114</td>
</tr>
<tr>
<td>End cap set 10-pole</td>
<td>48.5</td>
<td>74</td>
<td>24</td>
<td>71.5</td>
<td>30</td>
<td>120</td>
</tr>
</tbody>
</table>

The funnel side of the end cap fixed in the end cap set must be flush with the beam end of the travel section and must under no circumstances protrude. The end cap set is secured in the rail web with 2 self-tapping screws M4x8 DIN 7516.

Hole diameter in aluminium rail: 3.6 mm Ø
in steel - rail: 3.6 mm Ø
Installation Instruction

Single Pole Insulated Conductor Rail
Programme 815

b) Rail joint, angled (45°)
 (in general, the same applies as described under 3.7)

<table>
<thead>
<tr>
<th>t</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>68.5</td>
</tr>
<tr>
<td>5</td>
<td>69.5</td>
</tr>
<tr>
<td>6</td>
<td>70.5</td>
</tr>
<tr>
<td>7</td>
<td>71.5</td>
</tr>
<tr>
<td>8</td>
<td>72.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>35.5</td>
</tr>
<tr>
<td>5</td>
<td>34.5</td>
</tr>
<tr>
<td>6</td>
<td>33.5</td>
</tr>
<tr>
<td>7</td>
<td>32.5</td>
</tr>
<tr>
<td>8</td>
<td>31.5</td>
</tr>
</tbody>
</table>
3.8 Current collectors

Single and double-head current collectors fitted on a mounting bracket are available.
A maximum continuous load of 50 Amps is admissible.
The current collectors are supplied as standard 6, 8 and 10-pole units; maximum lateral / height displacements of ±10 mm can be accommodated.
The current collector units can be used for travel in both directions. For one-way travel they must be installed as trailing units. The arrow on the shoe insulation indicates the direction of travel.

<table>
<thead>
<tr>
<th>Poles</th>
<th>A [mm]</th>
<th>B [mm]</th>
<th>L [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>16</td>
<td>6</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>20</td>
<td>110</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>25</td>
<td>120</td>
</tr>
</tbody>
</table>
Installation Instruction

Single Pole Insulated Conductor Rail
Programme 815

It must be ensured that the connection cable cannot exert any tension, pressure or torsion on the current collector or collector shoe. If the collector shoe is worn out, the shoe insulation together with the collector shoe respectively the pair of collector shoes must be replaced. Please proceed as follows:

a) Pull connection cable off the connection lug on the collector shoe.

b) Pull the shoe insulation with worn out collector shoe respectively pair of collector shoes off the current collector arm.

c) Install the new shoe insulation with collector shoe respectively pair of collector shoes in reverse sequence. It is imperative to ensure that:

1. the arrow on the shoe insulation(s) is pointing in the direction of the current collector fixation;

2. when the two webs of the pair of collector shoes are snapped-in on the shoe insulations these will be placed between the two pins on both sides of the current collector arm. These two webs serve as a spring and secure the center position of the shoe insulations.
3.9 Collector shoe control unit

a) Description and function

The control unit is installed in the overhead monorail to ensure that worn collector shoes or missing current collectors are automatically detected by an electric signal. Testing is performed using a contactless circuit with a plastic-sheathed solenoid switch mounted in a plastic housing. During operation each shoe triggers a pulse. Once the wear limit is reached, the operating distance to the initiator is too large and the missing control signal can be evaluated accordingly. The control unit can only be used in conjunction with double current collectors 081504 / 05 / 08 and 09.

b) Installation

The unit is supplied completely assembled. It is attached to the overhead monorail with 4 screws. The rail is to be recessed beforehand in accordance with the following diagram:

<table>
<thead>
<tr>
<th>Collector shoe control unit</th>
<th>4 poles</th>
<th>6 poles</th>
<th>8 poles</th>
<th>10 poles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail spacing [mm]</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>A [mm]</td>
<td>42</td>
<td>70</td>
<td>107</td>
<td>107</td>
</tr>
<tr>
<td>B [mm]</td>
<td>68</td>
<td>95</td>
<td>134</td>
<td>134</td>
</tr>
</tbody>
</table>
Installation Instruction

Single Pole Insulated Conductor Rail
Programme 815

The conductor rail is removed at the installation point by 51 mm and inserted flush into the plastic body of the control unit. Hanger clamps and anchor caps are mounted on both sides. The initiators and the gap "m" are preset at the works. If operating conditions require, the collector shoe control unit can be electrically fed.

with $E = 5$ mm here mount
2 washers 6.4 DIN 125

<table>
<thead>
<tr>
<th>E - Web width</th>
<th>m</th>
<th>Number of shim rings DIN 968-6x140.5 steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>12</td>
</tr>
</tbody>
</table>

Hint:
The sensor of the control unit has to be connected in parallel connection!

$x = 1.0$ mm for copper graphite
0.5 mm for pure graphite

Use for double current collectors only!
4. Check of installation

After completion of the installation all components, in particular all contact points, have to be checked for perfect operation and fit. The specified central installation position of the current collector is to be checked, too, as well as its movement tolerance of ± 10 mm.

At transfer points and switches it must be ensured that opposite rail ends are in exact alignment to prevent faults when the current collectors pass over. Max. height and lateral displacement ± 3 mm.

When there is no support assembly on the track profile, it has to be checked, if, the track couplers, power feeds, separating and expansion points are equipped with hanger clamps on both sides (max. distance 200 mm). Complete if required.

5. Maintenance

If no collector shoe control unit is installed, abrasion of the collector shoe must be checked from time to time. In the event of any wear on the collector shoes up to the shoe insulation, these must be replaced.

During maintenance and cleaning work on the system, make sure that only solvent-free cleaning agents are used, which do not destroy plastics such as PVC, polycarbonates, polyamides etc.
Installation Instruction

Single Pole Insulated Conductor Rail Programme 815

6. Photos of relevant parts

- 081526-6; Rail connector „Plug-in type”
- 081521; Rail connector „Screw type”
- 081551-...; Power feed
- 081574 / 081575-...; End cap for transfer points / end cap „long”; without and with power feed
- 081577/ 081578-...; End cap for transfer points / end cap „short” without and with power feed
- 08-S280-... / 081543-...; Hanger clamps 8 and 10 poles
- 081594-...; Air gap separating point (with and without power feed)
- 081561-...; Expansion joint with 8 mm expansion
- 081562-...; Expansion joint with 20 mm expansion and jumper cable
- 081506-.../07-...; Current collector; single pole; terminal lug connection
- 081508-.../09-...; Double current collector; single pole; 2 term. lug connections
- 081508-.../09-...; Double current collector unit; 8 poles